Interpolatory quadrature formulae with Chebyshev abscissae of the third or fourth kind

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost - Interpolatory Chebyshev Quadrature

The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight fu...

متن کامل

Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions

We evaluate explicitly the integrals ∫ 1 −1 πn(t)/(r ∓ t)dt, |r| = 1, with the πn being any one of the four Chebyshev polynomials of degree n. These integrals are subsequently used in order to obtain error bounds for interpolatory quadrature formulae with Chebyshev abscissae, when the function to be integrated is analytic in a domain containing [−1, 1] in its interior.

متن کامل

CHARACTERISTIC FUNCTIONS AND s-ORTHOGONALITY PROPERTIES OF CHEBYSHEV POLYNOMIALS OF THIRD AND FOURTH KIND

The properties of two families of s-orthogonal polynomials, which are connected with Chebyshev polynomials of third and fourth kind, are studied. Evaluations of the remainders are given and asymptotic formulae are calculated for the corresponding hyper-Gaussian formulae used for an approximate estimation of integrals. 2000 Mathematics Subject Classification: 33C45, 65D32.

متن کامل

Gauss-chebyshev Quadrature Formulae for Strongly Singular Integrals

This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...

متن کامل

Korobov polynomials of the third kind and of the fourth kind

The first degenerate version of the Bernoulli polynomials of the second kind appeared in the paper by Korobov (Math Notes 2:77-19, 1996; Proceedings of the IV international conference modern problems of number theory and its applications, pp 40-49, 2001). In this paper, we study two degenerate versions of the Bernoulli polynomials of the second kind which will be called Korobov polynomials of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1997

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(97)00018-6